Part Number Hot Search : 
AD8517 IMP5121 16100 BU4219F MPW2142 BR10100 CS5461A C5750
Product Description
Full Text Search
 

To Download MAX3840 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 19-1854; Rev 1; 11/01
+3.3V, 2.7Gbps Dual 2
General Description
The MAX3840 is a dual 2 2 asynchronous crosspoint switch for SDH/SONET DWDM and other high-speed data switching applications where serial data stream loop-through and protection channel switching are required. It is ideal for OC-48 systems with forward error correction. A high-bandwidth, fully differential signal path minimizes jitter accumulation, crosstalk, and signal skew. Each 2 2 crosspoint switch can fan out and/or multiplex up to 2.7Gbps data and 2.7GHz clock signals. All inputs and outputs are current mode logic (CML) compatible and easily adaptable to interface with an AC-coupled LVPECL signal. When not used, each CML output stage can be powered down with an enable control to conserve power. The typical power consumption is 460mW with all outputs enabled. The MAX3840 is compatible with the MAX3876 2.5Gbps clock and data recovery (CDR) circuit. The MAX3840 is available in a 32-pin exposed-pad QFN package (5mm 5mm footprint) and operates from a +3.3V supply over a temperature range of -40C to +85C.
2 Crosspoint Switch
Features
MAX3840
o Single +3.3V Supply o 460mW Power Consumption o 2psRMS Random Jitter o 7psP-P Deterministic Jitter o Power-Down Feature for Deselected Outputs o CML Inputs/Outputs o 6ps Channel-to-Channel Skew o 100ps Output Edge Speed o 5mm 5mm 32 QFN Package
________________________Applications
SDH/SONET and DWDM Transport Systems Add-Drop Multiplexers ATM Switch Cores WDM Cross-Connects High-Speed Backplanes
PART MAX3840EGJ
Ordering Information
TEMP RANGE -40C TO +85C PIN-PACKAGE 32 QFN
Pin Configuration appears at end of data sheet.
Typical Application Circuit
VCC = +3.3V
MAX3866 TIA AND LA
MAX3876 CDR
DATA
MAX3869 LASER DRIVER
CLOCK
MAX3866 TIA AND LA
MAX3876 CDR
DATA
MAX3840 CROSSPOINT SWITCH
MAX3869 LASER DRIVER
CLOCK ZO = 50 TRANSMISSION LINE
________________________________________________________________ Maxim Integrated Products
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.
+3.3V, 2.7Gbps Dual 2 MAX3840
ABSOLUTE MAXIMUM RATINGS
2 Crosspoint Switch
Supply Voltage, VCC .............................................-0.5V to +5.0V Input Voltage (CML) .........................(VCC - 1.0) to (VCC + 0.5V) TTL Control Input Voltage...........................-0.5V to (VCC + 0.5V) Output Currents (CML) .......................................................22mA Continuous Power Dissipation at TA = +85C 32-Pin QFN (derate 29.4mW/C)...................................1.9W
Operating Temperature Range ...........................-40C to +85C Operating Junction Temperature Range ...........-55C to +150C Storage Temperature Range .............................-65C to +160C Lead Temperature (soldering, 10s) .................................+300C
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
DC ELECTRICAL CHARACTERISTICS
(VCC = +3.0V to +3.6V, TA = -40C to +85C. Typical values are at VCC = +3.3V, TA = +25C, unless otherwise noted.)
PARAMETER Supply Current CML Differential Output Swing Differential Output Impedance CML Output Common-Mode Voltage CML Single-Ended Input Voltage Range CML Differential Input Voltage Swing CML Single-Ended Input Impedance TTL SPECIFICATIONS TTL Input High Voltage TTL Input Low Voltage TTL Input High Current TTL Input Low Current VIH VIL IIH IIL -10 -10 2.0 0.8 +10 +10 V V A A VIS RL = 50 to VCC VCC - 0.8 300 42.5 50 SYMBOL ICC CONDITIONS All outputs enabled RL = 50 to VCC (Figure 2) 640 85 MIN TYP 140 800 100 VCC - 0.2 VCC + 0.4 1600 57.5 MAX 190 1000 115 UNITS mA MVP-P V V MVP-P
CML INPUT AND OUTPUT SPECIFICATIONS
2
_______________________________________________________________________________________
+3.3V, 2.7Gbps Dual 2
AC ELECTRICAL CHARACTERISTICS
2 Crosspoint Switch MAX3840
(VCC = +3.0V to +3.6V, TA = -40C to +85C. Typical values are at VCC = +3.3V, TA = +25C, unless otherwise noted.) (Note 1)
PARAMETER CML Input and Output Data Rate CML Input and Output Clock Rate CML Output Rise and Fall Time CML Output Random Jitter CML Output Deterministic Jitter CML Output Differential Skew CML Output Channel-toChannel Skew Propagation Delay from Inputto-Output tr, tf RJ DJ tskew1 tskew2 td 20% to 80% (Note 2) (Note 3) Any differential pair Any two outputs SYMBOL CONDITIONS MIN TYP 2.7 2.7 100 2 7 7 15 185 20 25 40 136 MAX UNITS Gbps GHz ps psRMS psPP ps ps ps
Note 1: AC characteristics are guaranteed by design and characterization. Note 2: Measured with 100mVP-P noise (f 2MHz) on the power supply. Note 3: Deterministic jitter (DJ) is the arithmetic sum of pattern-dependent jitter and pulse width distortion.
_______________________________________________________________________________________
3
+3.3V, 2.7Gbps Dual 2 MAX3840
2 Crosspoint Switch
Typical Operating Characteristics
(VCC = +3.3V, TA = +25C, unless otherwise noted.)
SUPPLY CURRENT vs. TEMPERATURE
MAX3840 toc01
CML DIFFERENTIAL VOLTAGE
CML DIFFERENTIAL VOLTAGE (mVP-P) 750 700 650 600 550 500 450 400 350 300 250 200
MAX3840 toc02
160 4 OUTPUTS ENABLED 140 SUPPLY CURRENT (mA) 120 100 80 60 40 20 0 -50 -30 -10 10 50 30 TEMPERATURE (C) 70 3 OUTPUTS ENABLED 2 OUTPUTS ENABLED 1 OUTPUT ENABLED 0 OUTPUTS ENABLED
800
90
-50
-30
-10
10 50 30 TEMPERATURE (C)
70
90
2.7Gbps EYE DIAGRAM
INPUT = 223 - 1PRBS
MAX3840 toc03
CHANNEL-TO-CHANNEL SKEW vs. TEMPERATURE
18 16 14
MAX3840 toc04
20
150mV/div
TMIE (ps)
12 10 8 6 4 2 0 CHANNEL A -50 -30 -10 10 30 50 70 90 CHANNEL B
54ps/div
TEMPERATURE (C)
4
_______________________________________________________________________________________
+3.3V, 2.7Gbps Dual 2
2 Crosspoint Switch
Pin Description
MAX3840
PIN 1 2 3 4 5 6 7 8 9, 24 10, 13, 16, 17, 20, 23 11 12 14 15 18 19 21 22 25 26 27 28 29 30 31 32 EP
NAME ENB1 DIB1+ DIB1ENB0 SELB0 DIB0+ DIB0SELB1 GND VCC DOB0DOB0+ DOB1DOB1+ DOA1DOA1+ DOA0DOA0+ SELA1 DIA0+ DIA0SELA0 ENA0 DIA1+ DIA1ENA1 Exposed Pad
FUNCTION Channel B1 Output Enable, TTL Input. A TTL low input powers down B1 output stage. Channel B1 Positive Signal Input, CML Channel B1 Negative Signal Input, CML Channel B0 Output Enable, TTL Input. A TTL low input powers down B0 output stage. Channel B0 Output Select, TTL Input. See Table 1. Channel B0 Positive Signal Input, CML Channel B0 Negative Signal Input, CML Channel B1 Output Select, TTL Input. See Table 1. Supply Ground Positive Supply Channel B0 Negative Output, CML Channel B0 Positive Output, CML Channel B1 Negative Output, CML Channel B1 Positive Output, CML Channel A1 Negative Output, CML Channel A1 Positive Output, CML Channel A0 Negative Output, CML Channel A0 Positive Output, CML Channel A1 Output Select, TTL Input. See Table 1. Channel A0 Positive Signal Input, CML Channel A0 Negative Signal Input, CML Channel A0 Output Select, TTL Input. See Table 1. Channel A0 Output Enable, TTL Input. A TTL low input powers down A0 output stage. Channel A1 Positive Signal Input, CML Channel A1 Negative Signal Input, CML Channel A1 Output Enable, TTL Input. A TTL low input powers down A1 output stage. Ground. The exposed pad must be soldered to the circuit board ground for proper electrical and thermal operation.
_______________________________________________________________________________________
5
+3.3V, 2.7Gbps Dual 2 MAX3840
Table 1. Output Routing
ROUTING CONTROLS SELA0/SELB0 0 0 1 1 X SELA1/SELB1 0 1 0 1 X
2 Crosspoint Switch
OUTPUT CONTROLS ENA0/ENA1 ENB0/ENB1 1 1 1 1 0 1 1 1 1 0 DIA0/DIB0 DIA0/DIB0 DIA1/DIB1 DIA1/DIB1 Power Down
OUTPUT SIGNALS Signal at DOA0/DOB0 Signal at DOA1/DOB1 DIA0/DIB0 DIA1/DIB1 DIA0/DIB0 DIA1/DIB1 Power Down
DIA0+ DIA0-
CML
0 CML 1
DOA0+ DOA0ENA0 SELA0
CML+
500mV MAX
320mV MIN
0 DIA1+ DIA1CML CML 1
DOA1+ DOA1ENA1 SELA1
CML-
DIB0+ DIB0-
CML
0 CML 1
DOB0+ DOB0ENB0 SELB0
1000mV MAX 640mV MIN
0 DIB1+ DIB1CML CML 1
DOB1+ DOB1ENB1 SELB1
(CML+) - (CML-)
Figure 1. Functional Block Diagram
Figure 2. CML Output Levels
_______________ Detailed Description
The block diagram in Figure 1 shows the MAX3840 architecture. The SELA_ and SELB_ pins control the routing of the signals through the crosspoint switch. Each output of the crosspoint switch drives a CML output driver. Each of the outputs, DOA_ and DOB_, is enabled or disabled by the respective ENA_ and ENB_ pins.
CML Inputs and Outputs
CML is used to simplify high-speed interfacing. Onchip input and output terminations minimize the number of external components required while improving signal integrity. The CML output signal swing is small, resulting in lower power consumption. The internal 50 input and output terminations minimize reflections and eliminate the need for external terminations.
6
_______________________________________________________________________________________
+3.3V, 2.7Gbps Dual 2
Applications Information
Interfacing PECL Inputs and Outputs to the MAX3840
For information on interfacing with CML, refer to Maxim Application Note HFAN-1, Interfacing Between CML, PECL, and LVDS.
2 Crosspoint Switch
Layout Techniques
MAX3840
For best performance, use good high-frequency layout techniques, filter VCC supplies, and keep ground connections short. Use multiple vias where possible. Also, use controlled-impedance transmission lines to interface with the MAX3840 data inputs and outputs.
___________________ Interface Models
Figure 3 shows the interface model for the CML inputs, and Figure 4 shows the model for CML outputs.
VCC VCC
MAX3840
VCC
50 50 DIA0+ DOA050
VCC
DOA0+
50 DIA0-
MAX3840
Figure 3. CML Input Model
Figure 4. CML Output Model
_______________________________________________________________________________________
7
+3.3V, 2.7Gbps Dual 2 MAX3840
2 Crosspoint Switch
Chip Information
TRANSISTOR COUNT: 1200 PROCESS: Bipolar (SiGe)
Pin Configuration
SELA0 DIA1+ DIA0+ DIA1DIA0ENA1 ENA0 SELA1
TOP VIEW
32
31
30
29
28
27
26
25 24 23 22
ENB1 DIB1+ DIB1ENB0 SELB0 DIB0+ DIB0SELB1
1 2 3 4 5 6 7 8 10 11 12 13 14 15 16
GND VCC DOA0+ DOA0VCC DOA1+ DOA1VCC
* MAX3840
21 20 19 18 17
9
DOB0+
DOB1+
DOB0-
DOB1-
VCC
VCC
GND
QFN*
NOTE: THE EXPOSED PAD MUST BE SOLDERED TO THE SUPPLY GROUND.
8
_______________________________________________________________________________________
VCC
+3.3V, 2.7Gbps Dual 2
2 Crosspoint Switch
Package Information
MAX3840
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)
_______________________________________________________________________________________
32L QFN.EPS
9
+3.3V, 2.7Gbps Dual 2 MAX3840
2 Crosspoint Switch
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
10 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 (c) 2001 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.


▲Up To Search▲   

 
Price & Availability of MAX3840

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X